OKLAHOMA STATE UNIVERSITY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 5713 Linear System Spring 1998 Midterm Exam #2

Name :	
Student ID:	
F-Mail Address	

Problem 1: Let

$$S = \left\{ x \in \Re^3 | x = \alpha \begin{bmatrix} 0.6 \\ 1.2 \\ 0.0 \end{bmatrix} + \beta \begin{bmatrix} 0.5 \\ 1.0 \\ 0.0 \end{bmatrix}, \alpha, \beta \in \Re \right\},\,$$

find the orthogonal complement space of S, $S^\perp(\subset\Re^3)$, and determine an orthonormal basis and dimension for S^{\perp} . For $x = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^T (\in \Re^3)$. And find its direct sum representation (i.e., x_1 and (x_2) of $(x = x_1 \oplus x_2)$, such that $(x_1 \in S)$, $(x_2 \in S)^{\perp}$.

Problem 2: Let $V = F^3$, and let F be the field of rational polynomials. Determine the representation of $v = \begin{bmatrix} s+2 & \frac{1}{s} & -2 \end{bmatrix}^T$ in (V,F) with respect to the basis $\{v^1, v^2, v^3\}$, where $v^{1} = \begin{bmatrix} 1 & -1 & 1 \end{bmatrix}^{T}, v^{2} = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}^{T}, v^{3} = \begin{bmatrix} 0 & -1 & 0 \end{bmatrix}^{T}.$

Problem 3:

Show that the determinant of the $m \times m$ matrix

$$\begin{bmatrix} s^{k_m} & -1 & 0 & \cdots & 0 & 0 \\ 0 & s^{k_{m-1}} & -1 & \cdots & 0 & 0 \\ 0 & 0 & s^{k_{m-2}} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & s^{k_2} & -1 \\ \beta_m(s) & \beta_{m-1}(s) & \beta_{m-2}(s) & \cdots & \beta_2(s) & s^{k_1} + \beta_1(s) \end{bmatrix}$$

is equal to

$$s^{n} + \beta_{1}(s)s^{n-k_{1}} + \beta_{2}(s)s^{n-k_{1}-k_{2}} + \cdots + \beta_{m}(s)$$

where $n = k_1 + k_2 + \cdots + k_m$ and $\beta_i(s)$ are arbitrary polynomials. (<u>hint</u>: proof by induction)

Problem 4: Given is the system of first-order ordinary differential equation

$$\dot{x} = t^2 A x$$

 $\dot{x} = t^2 A x$, where $A \in \Re^{n \times n}$ and $t \in \Re$. Determine the state transition matrix $\Phi(t, t_0)$.

Problem 5:

Consider
$$x(k+1) = A(k)x(k)$$
. Define
$$\Phi(k,m) = A(k-1)A(k-2)\cdots A(m), \quad \text{for } k > m$$

$$\Phi(m,m) = I$$

Show that, given the initial state $x(m) = x_0$, the state at iteration k is given by $x(k) = \Phi(k, m)x_0$. If A is independent of k, what is $\Phi(k, m)$?